skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheikh Sidiya, Ahmed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blindrestoration of low-quality faces in the real world has advanced rapidly in recent years. The rich and diverse priors encapsulated by pre-trained face GAN have demonstrated their effectiveness in reconstructing high-quality faces from low-quality observations in the real world. However, the modeling of degradation in real-world face images remains poorly understood, affecting the property of generalization of existing methods. Inspired by the success of pre-trained models and transformers in recent years, we propose to solve the problem of blind restoration by jointly exploiting their power for degradation and prior learning, respectively. On the one hand, we train a two-generator architecture for degradation learning to transfer the style of low-quality real-world faces to the high-resolution output of pre-trained StyleGAN. On the other hand, we present a hybrid architecture, called Skip-Transformer (ST), which combines transformer encoder modules with a pre-trained StyleGAN-based decoder using skip layers. Such a hybrid design is innovative in that it represents the first attempt to jointly exploit the global attention mechanism of the transformer and pre-trained StyleGAN-based generative facial priors. We have compared our DL-ST model with the latest three benchmarks for blind image restoration (DFDNet, PSFRGAN, and GFP-GAN). Our experimental results have shown that this work outperforms all other competing methods, both subjectively and objectively (as measured by the Fréchet Inception Distance and NIQE metrics). 
    more » « less
  2. Extreme face super-resolution (FSR), that is, improving the resolution of face images by an extreme scaling factor (often greater than ×8) has remained underexplored in the literature of low-level vision. Extreme FSR in the wild must address the challenges of both unpaired training data and unknown degradation factors. Inspired by the latest advances in image super-resolution (SR) and self-supervised learning (SSL), we propose a novel two-step approach to FSR by introducing a mid-resolution (MR) image as the stepping stone. In the first step, we leverage ideas from SSL-based SR reconstruction of medical images (e.g., MRI and ultrasound) to modeling the realistic degradation process of face images in the real world; in the second step, we extract the latent codes from MR images and interpolate them in a self-supervised manner to facilitate artifact-suppressed image reconstruction. Our two-step extreme FSR can be interpreted as the combination of existing self-supervised CycleGAN (step 1) and StyleGAN (step 2) that overcomes the barrier of critical resolution in face recognition. Extensive experimental results have shown that our two-step approach can significantly outperform existing state-of-the-art FSR techniques, including FSRGAN, Bulat's method, and PULSE, especially for large scaling factors such as 64. 
    more » « less